Skip to contents

MS chromatograms are returned by default in long format with three columns: retention time, m/z, and intensity.

As an example, we can load the ‘Varian’ SMS chromatogram included in the chromConverterExtraTests package.

# download example file from the web
path_sms <- tempfile(fileext = ".sms")
download.file("https://raw.github.com/ethanbass/chromConverterExtraTests/master/inst/STRD15.SMS", destfile = path_sms)

dat <- read_chroms(path_sms, format_in = "varian_sms", format_out = "data.frame")

Plot TIC and mass spectra use base R syntax

x <- dat[[1]]$MS1

# derive TIC using aggregate
tic <- aggregate(intensity ~ rt, data = x, FUN = sum)

# plot TIC
matplot(tic$rt, tic$intensity, type = 'l',
        ylab = "Total intensity", xlab = "Time (min)")

Here is a simple plot function you could use to plot mass spectra in base R:

plot_spec <- function(spec, lab_int=0.2, digits=1){
  plot(spec, type = "h", xlab = "m/z", ylab = "Intensity")
  lab.idx <- which(spec$intensity > lab_int * max(spec$intensity))
  text(spec$mz[lab.idx], spec$intensity[lab.idx], round(spec$mz[lab.idx], 
                    digits), offset = 0.25, pos = 3, cex = 0.5)
}

You can extract mass spectra by filtering on time, e.g., to get the mass spectrum of the first scan, you could do:

times <- unique(x$rt)
spec <- x[x$rt == times[100], -1]
plot_spec(spec)

Plot TIC and mass spectra using dplyr syntax

Plot TIC with dplyr:

tic <- x |> dplyr::group_by(rt) |> dplyr::summarize_at("intensity", sum)

plot(intensity ~ rt, data=tic, type = 'l',
        ylab = "Total intensity", xlab = "Time (min)")

Plot spectrum with dplyr:

dplyr::filter(x, rt == 7.26355) |> 
  dplyr::select(mz, intensity) |> 
  plot_spec()

Plot TIC and mass spectra using data.table syntax

Convert to data.table:

x <- data.table::as.data.table(x)

chromConverter can also return chromatograms in data.table format directly:

dat <- read_chroms(path_sms, format_in = "varian_sms", format_out = "data.table")

Extract the total ion chromatogram:

tic <- x[, .(intensity = sum(intensity)), by = rt]
matplot(tic$rt, tic$intensity, type = 'l',
        ylab = "Total intensity", xlab = "Time (min)")

Extract the base ion chromatogram:

bpc <- x[, .(intensity = max(intensity)), by = rt]
matplot(bpc$rt, bpc$intensity, type = 'l',
        ylab = "Base ion chromatogram", xlab = "Time (min)")

To obtain a mass spectrum we just filter by retention time as before:

plot_spec(x[rt == 7.26355, c('mz','intensity')])

Plot TIC and mass spectra using ggplot

library(ggplot2)
ggplot(data = tic, aes(x=rt, y=intensity)) + 
  geom_line() + 
  xlab("Retention time (min)") +
  ylab("Intensity")

Plot mass spectrum with ggplot:

lab_int <- 0.2
digits <- 1
dplyr::filter(x, rt == 7.26355) |> 
  dplyr::select(mz, intensity) |> 
  ggplot(aes(x = mz, y = intensity)) +
  geom_segment(aes(xend = mz, yend = 0), linewidth = 0.5) +
  geom_text(data = subset(spec, intensity > lab_int * max(intensity)),
            aes(label = round(mz, digits)),
            vjust = -0.5, size = 2) +
  labs(x = "m/z", y = "Intensity") +
  theme_minimal()

Session Information

sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] data.table_1.16.2    ggplot2_3.5.1        chromConverter_0.7.1
#> 
#> loaded via a namespace (and not attached):
#>  [1] rappdirs_0.3.3    generics_0.1.3    sass_0.4.9        utf8_1.2.4       
#>  [5] bitops_1.0-9      xml2_1.3.6        stringi_1.8.4     lattice_0.22-6   
#>  [9] digest_0.6.37     magrittr_2.0.3    evaluate_1.0.1    grid_4.4.2       
#> [13] fastmap_1.2.0     rprojroot_2.0.4   cellranger_1.1.0  jsonlite_1.8.9   
#> [17] Matrix_1.7-1      purrr_1.0.2       fansi_1.0.6       scales_1.3.0     
#> [21] RaMS_1.4.3        pbapply_1.7-2     textshaping_0.4.0 jquerylib_0.1.4  
#> [25] cli_3.6.3         rlang_1.1.4       bit64_4.5.2       munsell_0.5.1    
#> [29] withr_3.0.2       base64enc_0.1-3   cachem_1.1.0      yaml_2.3.10      
#> [33] parallel_4.4.2    tools_4.4.2       dplyr_1.1.4       colorspace_2.1-1 
#> [37] here_1.0.1        reticulate_1.39.0 vctrs_0.6.5       R6_2.5.1         
#> [41] png_0.1-8         lifecycle_1.0.4   stringr_1.5.1     fs_1.6.5         
#> [45] bit_4.5.0         ragg_1.3.3        pkgconfig_2.0.3   desc_1.4.3       
#> [49] pkgdown_2.1.1     bslib_0.8.0       pillar_1.9.0      gtable_0.3.6     
#> [53] glue_1.8.0        Rcpp_1.0.13-1     systemfonts_1.1.0 tidyselect_1.2.1 
#> [57] xfun_0.49         tibble_3.2.1      knitr_1.49        farver_2.1.2     
#> [61] htmltools_0.5.8.1 labeling_0.4.3    rmarkdown_2.29    compiler_4.4.2   
#> [65] entab_0.3.1       readxl_1.4.3