Utility function to combine duplicate peaks in peak table, i.e. peaks that
were integrated at more than one wavelength or component. Specify tolerance
(tol
) for retention time matching and minimum spectral correlation
(min.cor
) for a match.
Usage
combine_peaks(
peak_table,
tol = 0.01,
min.cor = 0.9,
choose = "max",
verbose = getOption("verbose")
)
Arguments
- peak_table
Peak table from
get_peaktable
.- tol
Tolerance for matching retention times (maximum retention time difference). Defaults to
.01
.- min.cor
Minimum spectral correlation to confirm a match. Defaults to
0.9
.- choose
If
max
will retain peak with highest intensity. Otherwise, the first column in the data.frame will be retained.- verbose
Logical. Whether to print status to the console.
Value
A peak table similar to the input peak table, but with duplicate columns combined according to the specified criteria.
Examples
data(pk_tab)
data(Sa_warp)
pk_tab <- attach_ref_spectra(pk_tab)
combine_peaks(pk_tab, tol = .02, min.cor = .9)
#> V1 V2 V3 V4 V5 V6 V7 V8
#> 119 0.000000 5.111190 0.0000000 0.5864823 1.858693 15.079233 0.000000 0.4135257
#> 121 0.000000 4.033081 0.9163944 0.5221266 0.000000 7.705485 0.000000 0.0000000
#> 122 3.368245 8.228498 0.9735932 0.0000000 1.963956 25.888893 0.000000 1.8394472
#> 458 0.000000 5.655876 1.8309616 0.0000000 1.735467 14.650605 1.459654 0.3488550
#> V9 V10 V11 V12 V13 V14 V15 V16
#> 119 79.71546 2.637016 41.60604 1.724824 1.3743838 2.273449 36.58533 15.189655
#> 121 57.27332 1.042586 18.33105 0.000000 0.8614246 7.504094 20.56684 8.879872
#> 122 59.62042 1.417466 35.83855 0.000000 1.2422142 4.241067 31.60616 12.910084
#> 458 108.93550 4.157266 33.22952 3.405194 3.1656321 5.231752 42.99198 23.968663
#> V17 V18 V19 V20 V21 V22 V23
#> 119 33.71629 4.186043 3.890605 1.7999191 12.435065 15.09572 2.5155590
#> 121 22.59679 1.169449 1.750044 0.1143296 6.619292 12.54686 0.7921663
#> 122 28.40685 2.232165 3.037413 0.4855545 7.976247 14.88744 2.7807659
#> 458 25.33267 5.011990 5.348641 0.2741214 12.648599 15.42859 2.3459283
#> V24 V25 V26 V27 V28 V29 V30
#> 119 0.00000000 0.11261310 17.80024 2.0024282 0.0000000 0.7981487 0.8774407
#> 121 0.01374328 0.43874747 14.41614 0.6184847 0.5505384 0.4542899 0.5315334
#> 122 0.01900430 0.11078837 16.60867 0.9699587 1.2199894 1.2251103 0.8634827
#> 458 0.00512731 0.02601551 24.77821 1.0894581 1.0049019 1.5687582 1.7486409
#> V31 V32 V33 V34 V35 V36 V39
#> 119 1.819662 1.023753 1.541590 0.0000000 0.2105941 0.5041651 0.1046104
#> 121 1.085835 0.000000 1.811022 0.0000000 0.5440478 0.2934669 0.0000000
#> 122 1.288960 0.000000 4.117218 0.1280478 0.5797748 0.3649663 0.3733894
#> 458 1.459723 1.647317 3.730485 0.2736762 0.7127212 0.6514810 0.0000000
#> V40 V42 V43 V44 V46 V49 V50
#> 119 0.09932078 0.2558299 14.841595 0.00000000 0.8899389 16.64689 0.0000000
#> 121 0.18110972 0.0000000 6.941289 0.03897730 1.8268337 11.45662 0.1379431
#> 122 0.00000000 0.3773357 14.120471 0.03016515 1.7424893 14.23811 0.7083038
#> 458 0.07382435 0.7167379 11.020983 0.53962131 0.7439920 12.98416 0.6251158
#> V52 V54 V55 V57 V58 V60 V62
#> 119 1.1409371 5.373707 6.566692 0.000000000 0.059937260 0.1983225 0.3076778
#> 121 0.4724857 2.819725 5.966240 0.002892882 0.023415605 0.1066713 0.1992947
#> 122 1.1684493 3.438104 7.081215 0.004187678 0.041697073 0.2845064 0.0000000
#> 458 1.6551325 5.200684 7.292224 0.023957666 0.005351955 0.2704478 0.3774084
#> V63 V64
#> 119 0.6844486 0.5443093
#> 121 0.9549370 0.0000000
#> 122 0.9325107 0.0000000
#> 458 0.5895916 0.6156869